SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Petersson M) ;pers:(Petersson Per);pers:(Binda Federico 1987)"

Search: WFRF:(Petersson M) > Petersson Per > Binda Federico 1987

  • Result 1-10 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Litaudon, X., et al. (author)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
3.
  • Salewski, M., et al. (author)
  • MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET
  • 2017
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:5
  • Journal article (peer-reviewed)abstract
    • We demonstrate the measurement of a 2D MeV-range ion velocity distribution function by velocity-space tomography at JET. Deuterium ions were accelerated into the MeV-range by third harmonic ion cyclotron resonance heating. We made measurements with three neutron emission spectrometers and a high-resolution gamma-ray spectrometer detecting the gamma-rays released in two reactions. The tomographic inversion based on these five spectra is in excellent agreement with numerical simulations with the ASCOT-RFOF and the SPOT-RFOF codes. The length of the measured fast-ion tail corroborates the prediction that very few particles are accelerated above 2 MeV due to the weak wave-particle interaction at higher energies.
  •  
4.
  • Salewski, M., et al. (author)
  • Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography
  • 2018
  • In: Fusion science and technology. - : TAYLOR & FRANCIS INC. - 1536-1055 .- 1943-7641. ; 74:1-2, s. 23-36
  • Journal article (peer-reviewed)abstract
    • Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non-Maxwellian fast-ion distribution functions. This has recently been overcome by velocity-space tomography. In this method two-dimensional images of the velocity distribution functions consisting of a few hundreds or thousands of pixels are reconstructed using the available fast-ion measurements. Here we present an overview and current status of this emerging technique at the ASDEX Upgrade tokamak and the JET toamak based on fast-ion D-alpha spectroscopy, collective Thomson scattering, gamma-ray and neutron emission spectrometry, and neutral particle analyzers. We discuss Tikhonov regularization within the Bayesian framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors.
  •  
5.
  • Brezinsek, S., et al. (author)
  • Beryllium migration in JET ITER-like wall plasmas
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:6
  • Journal article (peer-reviewed)abstract
    • JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (E-in = 35 eV) and more than 100%, caused by Be self-sputtering (E-in = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at E-in = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of magnitude. Within the divertor, Be performs far fewer re-erosion and transport steps than C due to an energetic threshold for Be sputtering, and inhibits as a result of this the transport to the divertor floor and the pump duct entrance. The target plates in the JET-ILW inner divertor represent at the strike line a permanent net erosion zone, in contrast to the net deposition zone in JET-C with thick carbon deposits on the CFC (carbon-fibre composite) plates. The Be migration identified is consistent with the observed low long-term fuel retention and dust production with the JET-ILW.
  •  
6.
  • Jacobsen, A. S., et al. (author)
  • Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX Upgrade in deuterium plasmas
  • 2017
  • In: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 88:7
  • Journal article (peer-reviewed)abstract
    • Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part of velocity space each detector observes.
  •  
7.
  • Reinke, M. L., et al. (author)
  • Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors
  • 2017
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 91-99
  • Journal article (peer-reviewed)abstract
    • New techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q(vertical bar vertical bar) > 1 GW/m(2), while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called 'non-coronal' effects, we do not accurately know and have yet to demonstrate the maximum q(vertical bar vertical bar) which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H-and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N1+ through N6+ are observed. Active charge exchange spectroscopy of partially ionized low-Z impurities in the plasma edge is explored to measure N5+ and N6+ within the confined plasma, while passive UV and visible spectroscopy is used to measure N1+ - N4+ in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic coverage can be used to gain empirical insight and provide more data to validate boundary simulations.
  •  
8.
  • Rubel, Marek, et al. (author)
  • Dust generation in tokamaks : Overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall
  • 2018
  • In: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 136, s. 579-586
  • Journal article (peer-reviewed)abstract
    • Operation of the JET tokamak with beryllium and tungsten ITER-like wall provides unique opportunity for detailed studies on dust generation: quantity, morphology, location, etc. The programme carried out in response to ITER needs for safety assessment comprises: (i) remotely controlled vacuum cleaning of the divertor; (ii) local sampling of loosely bound matter from plasma-facing components (PFC); (iii) collection of mobilized dust on various erosion-deposition probes located in the divertor and in the main chamber. Results of comprehensive analyses performed by a number of complementary techniques, e.g. a range of microscopy methods, electron and ion spectroscopy, liquid scintillography and thermal desorption, are summarized by following points: (a) Total amount of dust collected by vacuum cleaning after three campaigns is about 1-1.4 g per campaign (19.1-23.5 h plasma operation), i.e. over 100 times smaller than in JET operated with carbon walls (i.e. in JET-C). (b) Two major categories of Be dust are identified: flakes of co-deposits formed on PFC and droplets (2-10 mu m in diameter). Small quantifies, below 1 g, of Be droplets and splashes are associated mainly with melting of beryllium limiters.
  •  
9.
  • Binda, Federico, 1987-, et al. (author)
  • Generation of the neutron response function of an NE213 scintillator for fusion applications
  • 2017
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : ELSEVIER. - 0168-9002 .- 1872-9576. ; 866, s. 222-229
  • Journal article (peer-reviewed)abstract
    • In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gammarays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results. (C) 2017 Published by Elsevier B.V.
  •  
10.
  • Coenen, J. W., et al. (author)
  • Transient induced tungsten melting at the Joint European Torus (JET)
  • 2017
  • In: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Journal article (peer-reviewed)abstract
    • Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes-power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15 degrees slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 32
Type of publication
journal article (31)
research review (1)
Type of content
peer-reviewed (32)
Author/Editor
Zychor, I (32)
Hellesen, Carl, 1980 ... (31)
Rubel, Marek (30)
Ericsson, Göran (30)
show more...
Hjalmarsson, Anders (30)
Andersson Sundén, Er ... (29)
Conroy, Sean (29)
Eriksson, Jacob, Dr, ... (29)
Cecconello, Marco (28)
Possnert, Göran, 195 ... (28)
Sjöstrand, Henrik, 1 ... (28)
Skiba, Mateusz, 1985 ... (27)
Weiszflog, Matthias (27)
Frassinetti, Lorenzo (25)
Hellsten, Torbjörn (25)
Bykov, Igor (25)
Ström, Petter (25)
Weckmann, Armin (25)
Menmuir, Sheena (24)
Dzysiuk, Nataliia (24)
Bergsåker, Henric (23)
Rachlew, Elisabeth, ... (23)
Johnson, Thomas (17)
Tholerus, Emmi (16)
Garcia-Carrasco, Alv ... (14)
Garcia Carrasco, Alv ... (13)
Asp, E (12)
Elevant, Thomas (12)
Ivanova, Darya (12)
Stefanikova, Estera (12)
Ratynskaia, Svetlana (9)
Olivares, Pablo Vall ... (9)
Tolias, Panagiotis (9)
Widdowson, A. (7)
Zhou, Yushun (7)
Jonsson, Thomas, 197 ... (7)
Tholerus, Simon, 198 ... (7)
Nocente, M (6)
Zhou, Yushan (6)
Mayer, M. (5)
Heinola, K (5)
Salewski, M (5)
Matthews, G. F. (5)
Brezinsek, S (4)
Likonen, J (4)
Alves, E (4)
Ratynskaia, Svetlana ... (4)
Baron-Wiechec, A. (4)
show less...
University
Royal Institute of Technology (32)
Uppsala University (32)
Chalmers University of Technology (4)
Language
English (32)
Research subject (UKÄ/SCB)
Natural sciences (32)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view